Model Selection for Simplicial Approximation
نویسندگان
چکیده
In the computational geometry field, simplicial complexes have been used to describe an underlying geometric shape knowing a point cloud sampled on it. In this article, an adequate statistical framework is first proposed for the choice of a simplicial complex among a parametrized family. A least squares penalized criterion is introduced to choose a complex, and a model selection theorem states how to select the “best” model, with a statistical point of view. This result gives the shape of the penalty, and next, the so called “slope heuristics method” is used to calibrate the penalty from the data. Some experimental studies on simulated and real dataset illustrate the method for the selection of graphs in two dimensions. Key-words: computational geometry, geometrical inference, simplicial complexes, model selection, penalization, slope heuristics. ∗ INRIA Saclay in ria -0 04 02 09 1, v er si on 1 16 S ep 2 00 9 Sélection de modèle pour l’approximation simpliciale Résumé : Les complexes simpliciaux sont utilisés en géométrie algorithmique pour décire une forme géométrique à partir de points d’observation échantillonnés sur celle-ci. Cet article propose tout d’abord un cadre statistique adapté à la question du choix d’un complexe simplicial parmis une famille donnée. Un critère de moindres carrés est défini pour choisir un complexe simplicial, et un résultat de sélection de modèle établit comment choisir le “meilleur” complexe de la collection, selon un point de vue statistique. Ce résultat fournit la forme de la pénalité et la méthode dite de “l’heuristique de pente” permet dans un second temps de calibrer la pénalité à partir des données. Une étude expérimentale basée sur des données simulées et réelles illustrent l’utilisation de la méthode pour la sélection de graphes en dimension 2. Mots-clés : géométrie algorithmique, inférence géométrique, complexes simpliciaux, sélection de modèles, pénalisation, heuristique de pente. in ria -0 04 02 09 1, v er si on 1 16 S ep 2 00 9 Model selection for simplicial approximation 3
منابع مشابه
Best Quadratic Spline Approximation
We present a method for hierarchical data approximation using quadratic simplicial elements for domain decomposition and field approximation. Higher-order simplicial elements can approximate data better than linear elements. Thus, fewer quadratic elements are required to achieve similar approximation quality. We use quadratic basis functions and compute best quadratic simplicial spline approxim...
متن کاملSimplicial approximation
The purpose of this paper is to display a different approach to the construction of the homotopy theory of simplicial sets and the corresponding equivalence with the homotopy theory of topological spaces. This approach is an alternative to existing published proofs [4],[11], but is of a more classical flavour in that it depends heavily on simplicial approximation techniques. The verification of...
متن کاملOn Curved Simplicial Elements and Best Quadratic Spline Approximation for Hierarchical Data Representation
We present a method for hierarchical data approximation using curved quadratic simplicial elements for domain decomposition. Scientific data defined over twoor three-dimensional domains typically contain boundaries and discontinuities that are to be preserved and approximated well for data analysis and visualization. Curved simplicial elements make possible a better representation of curved geo...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملA left-handed simplicial action for euclidean general relativity
An action for simplicial euclidean general relativity involving only left-handed fields is presented. The simplicial theory is shown to converge to continuum general relativity in the Plebanski formulation as the simplicial complex is refined. This contrasts with the Regge model for which M. Miller and Brewin have shown that the full field equations are much more restrictive than Einstein’s in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations of Computational Mathematics
دوره 11 شماره
صفحات -
تاریخ انتشار 2011